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Motivation: Galois Theory

F ⊂ K , fields subfactor: an inclusion N ⊂ M of
von Neumann algebras with trivial centers

degree of the field extension index of the subfactor N ⊂ M
[K : F ] [M : N]

the automorphism group the standard invariant, a tensor
Gal(K/F) category

the principal graph describes some
data of the standard invariant

The index, standard invariant, and principal graph are all invariants of the
subfactor!
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Example: How does the principal graph encode data?

Tensor category: Category of finite-dimensional representations of S3
Finite-dimensional irreducible representations of S3:

name denoted by dimension

trivial V1 1
sign V−1 1

standard V2 2

Self-dual object: V2, i.e., V2 = V2

Tensor decompositions:

V1 ⊗ V2
∼= V2

V−1 ⊗ V2
∼= V2

V2 ⊗ V2
∼= V1 ⊕ V−1 ⊕ V2

Principal Graph:

Index: ||A||2 of A =

0 1 0
1 1 1
0 1 0


Eigenvalues of A∗A: 0, 1, 4
=⇒ ||A|| = 2 =⇒ index is 4
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Index

Theorem (Jones 1983)

Let N ⊂ M be a subfactor. Then the index [M : N] must lie in the set

{4 cos2
(π
n

)
|n ≥ 3} ∪ [4,∞]

and moreover, all the numbers in this set can be realized as the index of a
subfactor.

Subfactors are classified up to index 51
4 .
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Principal Graphs: A finer invariant of subfactors

Theorem (Popa 1994)

Principal graphs of index 4 subfactors are exactly the simply-laced affine
Dynkin diagrams.

A∞

Ã2n−1

D̃n

Ẽ7

Ã∞

D̃∞

Ẽ6

Ẽ8
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The Standard Invariant

Theorem (Jones 1999)

Given a finite index subfactor, its standard invariant forms a (shaded)
subfactor planar algebra.

Theorem (Popa 1995)

Given a (shaded) subfactor planar algebra P, there is a subfactor whose
standard invariant is P.
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Goal

The Kuperberg Program

Give a diagrammatic presentation by generators and relations for every
subfactor planar algebra.
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History

Index < 4:

An: (Temperley-Lieb)
D2n: Morrison, Peters, Snyder (2008)
E6, E8: Bigelow (2009)

Index > 4:

A∞: (Temperley-Lieb)
Haagerup & its dual: Peters (2009)
Extended Haagerup & its dual: Bigelow, Morrison, Peters, Snyder (2009)
2221 & its complex conjugate: Han (2010)
3311 & its dual: Morrison and Penneys (2013)
...ongoing research...
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Goal for Today’s Talk:

Find presentations for the subfactor planar algebras of index 4 for the:

1 A∞ Dynkin diagram:

2 Ã2n−1 Dynkin diagram:

3 Ã∞ Dynkin diagram:

4 D̃∞ Dynkin diagram:

5 Ẽ7 Dynkin diagram:

But first... What is a planar algebra?
Melody Molander Skein Theory for Affine ADE Subfactor Planar Algebras



Goal 1: The Temperley-Lieb planar algebra T L
The planar algebra T L contains the algebras T Lk , k ≥ 0, over C.

Figure: An element of T L3

index is 4
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Planar Tangles
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Common Planar Tangles

Multiplication
·k : T Lk ⊗ T Lk → T Lk

Tensor
⊗k,ℓ : T Lk ⊗ T Lℓ → T Lk+ℓ

Trace
trk : T Lk → T L0
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General Planar Tangle

Associated linear map: ZT : T L2 ⊗ T L3 ⊗ T L2 → T L1
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Generalizing T L

Theorem (Jones)

Any subfactor planar algebra of index n ≥ 4 contains a copy of T L.
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The Formal Definition of a Planar Algebra

Definition

A planar algebra is:

a collection of vector spaces: Pk , k ≥ 0

a rule that assigns to each planar tangle T , a linear map ZT from the
vector spaces associated to the inner squares to the vector space
associated to the outer square such that:

linear maps compose in the same way planar tangles do
isotopy (rel the boundary) give the same maps

the identity on Pk is
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Subfactor Planar Algebra

T L is a special type of planar algebra called a subfactor planar algebra,
one of the most important properties being:

T L0 must be one-dimensional

Why is this a great property?
Any closed diagram evaluates:

and also this gives a that trace will be a sesquilinear form on Pk :
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The Formal Definition of a Subfactor Planar Algebras

Definition

A subfactor planar algebra is a planar algebra with

P0 being one-dimensional

only spaces for discs with an even number of boundary points are
nonzero

the spherical property, i.e., for each D ∈ P1,

an antilinear adjoint operation ∗ : Pk → Pk such that the sesquilinear
form given by < x , y >= tr(x∗y) is positive definite. Further ∗ should
be compatible with the horizontal reflection operation ∗ on planar
tangles.
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Create a Tensor Category

CP
Give a planar algebra P we can construct a tensor category CP as follows:

An object is a projection in one of the n-box spaces Pn

(i.e. π ∈ Pn such that π2 = π and π∗ = π)

Given two projections π1 ∈ Pn and π2 ∈ Pm, define
Hom(π1, π2) to be the space π2Pn→mπ1, i.e, diagrams
like:

The tensor product π1 ⊗ π2 agrees with ⊗ in the
planar algebra (placing diagrams side-by-side)

The dual π of a projection is rotating it 180 degrees

The trivial object ∅ is the empty picture (which is a
projection in P0)

There is a special self-dual object |, a single strand.
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Create a Matrix Category

Mat(CP)
Given the category CP we can define its matrix category:

The objects of Mat(CP) are formal direct sums of objects of CP
(which were the projections from all the box spaces)

A morphism of Mat(CP) from A1 ⊕ ...⊕ An → B1 ⊕ ...⊕ Bm is an
m-by-n matrix whose (i , j)th entry is in HomCP (Aj ,Bi ).

An induced tensor product from CP :
Tensoring Objects: formally distribute, i.e.,
(π1 ⊕ π2)⊗ π3 = (π1 ⊗ π3)⊕ (π2 ⊗ π3)
Tensoring Morphisms: use usual tensor product of matrices and the
tensor product for CP on matrix entries
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Projections of the Temperley-Lieb Planar Algebra

The Jones-Wenzl projection
f (k) ∈ T Lk is the unique projection in
T Lk with the property that
f (k)ei = ei f

(k) = 0, ∀i
T Lk generators:

T L is semisimple: every
projection is a direct sum of
minimal projections and for
any pair of non-isomorphic
minimal projections π1 and
π2 we have that
Hom(π1, π2) = 0

f (k) are actually minimal
projections: Hom(f (k), f (k))
is 1-dimensional:

Two projections, π1, π2, are
isomorphic if there exists
g ∈ Hom(π1, π2), and
g∗ ∈ Hom(π2, π1) such that
gg∗ = π2 and g∗g = π1.
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Principal Graphs

Principal graphs encode data of Mat(CP)
For T L, Wenzl’s relation: f (k) ⊗ | ∼= f (k+1) ⊕ f (k−1),

f (j) ∈ T Lj are the Jones-Wenzl projections

A principal graph encodes this relationship of the minimal projections:

which is A∞!

The principal graph of a semisimple planar algebra has vertices the
isomorphism classes of minimal projections, and there are

dim Hom(π1 ⊗ |, π2)(= dim Hom(π1, π2 ⊗ |))

edges between the vertices π1 ∈ Pn and π2 ∈ Pm.

i.e., Let π be a minimal projection. Then
π ⊗ | ∼= ⊕(neighbors of π in the principal graph)

Melody Molander Skein Theory for Affine ADE Subfactor Planar Algebras



Goal 2

Find the subfactor planar algebras of index 4 associated with the Ã2n−1

Dynkin diagram:
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What must happen?
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Arrow Case: P2 and Q2
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Arrow Case: The rest of the vertices
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Theorem 1 (M.)

Fix n. Let ωn be a 2nth root of unity. Let P(U) be the planar algebra with

generators: and relations:

1. 2. 3. 4.

5. 6.

Then this is an Ã2n−1 subfactor planar algebra of
index 4 with principal graph:
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P0(U) is at least one-dimensional

Define f : P0(U) → C by the following
algorithm.

1 Define f (∅) = 1. Let D ∈ P0(U) be
non-Temperley-Lieb. Use the relation (2)
to ensure every strand is oriented.

2 Enumerate all the U and U∗. Say
{U1, ...,Uℓ} and {U∗

1 , ...,U
∗
m}

3 For each Ui in P0(U) make a path, pi from
the star on the outside of the diagram to
the star for the Ui . Do similarly for U∗

i .

4 Define the star path length,

for each Ui or U
∗
i , respectively

5 Calculate k =
∑

i ,j(ki − k∗j )mod(2n) Then

define f (D) = ωk
n .
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P0(U) is at most one-dimensional

Evaluation Algorithm:

1 Consider a connected
component of your
diagram. Assume you
have no closed loops.

2

3

4

5

6

7
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Theorem 2 (M.)

Fix n. Let τn be an nth root of unity. Let P(V ) be the planar algebra with

generators: and relations:

1. 2. 3. 4.

5. 6.

Then this is an Ã2n−1 subfactor planar algebra of
index 4 with principal graph:

Melody Molander Skein Theory for Affine ADE Subfactor Planar Algebras



Goal 3

Proposition 1

There are at exactly 3n distinct subfactor planar algebras with principal
graphs Ã2n−1.

Proposition 2

There are exactly two distinct subfactor planar algebras with principal
graphs Ã∞, i.e, the principal graphs are:
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Goal 4

Find the subfactor planar algebra(s) of index 4 associated with the D̃∞
Dynkin diagram:
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Theorem 3 (M.)

Let P(S2) be the planar algebra with generator: and relations:

1. 2. 3.

4. S2 = S + 2f (2) 5. 6.
Then P(S2) is a D̃∞ subfactor planar
algebra of index 4 with principal graph:

Further, any D̃∞ subfactor planar
algebra has this presentation.

where Q2 =
1
3S + 1

3 f
(2),

P2 = − 1
3S + 2

3 f
(2), and

Melody Molander Skein Theory for Affine ADE Subfactor Planar Algebras



P(S2)0 is at least one-dimensional

Proposition 3

The D̃∞ subfactor planar algebra is a subplanar algebra of the arrow case
of the Ã∞ planar algebra.
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Evaluation Algorithm

Theorem (Bigelow and Penneys 2012)

If a planar algebra generated by S ∈ Pn satisfies that:

is a linear combination of trains, i.e., ,

and S2 is a linear combination of S and f (n)

then any closed diagram can be evaluated using the jellyfish algorithm.
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Goal 5

Find the subfactor planar algebra(s) of index 4 associated with the Ẽ7

Dynkin diagram:
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Theorem 4 (M.)

Let P be a subfactor planar algebra with principal graph Ẽ7:

then P is generated by with relations:

1. 2. 3. 4. S2 = S + 6f (4) 5.

6. For Q = 2
5 f

(4) + 1
5S ,

8. Defining ,
satisfies Reidemeister 2 & 3, &

7. For P = 3
5 f

(4)− 1
5S , , &

then
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Future Work

1 Prove the other direction of Ẽ7.
2 Find similar results for the other affine Dynkin diagrams:

D̃n

Ẽ6

Ẽ8
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