Skein Theory for Affine ADE Subfactor Planar Algebras

Melody Molander

UC Santa Barbara Quantum Groups Seminar

Pi Day, 2023

Melody Molander

Skein Theory for Affine ADE Subfactor Planar Algebras

$\mathit{F} \subset \mathit{K}$, fields	subfactor : an inclusion $N \subset M$ of
	von Neumann algebras with trivial centers
degree of the field extension	index of the subfactor $N \subset M$
[K : F]	[<i>M</i> : <i>N</i>]
the automorphism group	the standard invariant , a tensor
Gal(K/F)	category
	the principal graph describes some data of the standard invariant

The index, standard invariant, and principal graph are all invariants of the subfactor!

Example: How does the principal graph encode data?

Tensor category: Category of finite-dimensional representations of S_3 **Finite-dimensional irreducible representations of** S_3 :

name	denoted by	dimension
trivial	V ₁	1
sign	V_{-1}	1
standard	V ₂	2

Self-dual object: V_2 , i.e., $\overline{V_2} = V_2$ **Tensor decompositions:**

Principal Graph:

$$V_1 \otimes V_2 \cong V_2$$
$$V_{-1} \otimes V_2 \cong V_2$$
$$V_2 \otimes V_2 \cong V_1 \oplus V_{-1} \oplus V_2$$

$$V_{1} = V_{2} = V_{-1}$$
Index: $||A||^{2}$ of $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
Eigenvalues of $A^{*}A$: 0, 1, 4
 $\implies ||A|| = 2 \implies \text{ index is } 4$

Theorem (Jones 1983)

Let $N \subset M$ be a subfactor. Then the index [M : N] must lie in the set

$$\{4\cos^2\left(\frac{\pi}{n}\right) | n \ge 3\} \cup [4,\infty]$$

and moreover, all the numbers in this set can be realized as the index of a subfactor.

Subfactors are classified up to index $5\frac{1}{4}$.

Principal Graphs: A finer invariant of subfactors

Theorem (Popa 1994)

Principal graphs of index 4 subfactors are exactly the simply-laced affine Dynkin diagrams.

Theorem (Jones 1999)

Given a finite index subfactor, its standard invariant forms a (shaded) subfactor planar algebra.

Theorem (Popa 1995)

Given a (shaded) subfactor planar algebra \mathcal{P} , there is a subfactor whose standard invariant is \mathcal{P} .

The Kuperberg Program

Give a diagrammatic presentation by generators and relations for every subfactor planar algebra.

• Index < 4:

- *A_n*: (Temperley-Lieb)
- D_{2n}: Morrison, Peters, Snyder (2008)
- *E*₆, *E*₈: Bigelow (2009)
- Index > 4:
 - A_{∞} : (Temperley-Lieb)
 - Haagerup & its dual: Peters (2009)
 - Extended Haagerup & its dual: Bigelow, Morrison, Peters, Snyder (2009)
 - 2221 & its complex conjugate: Han (2010)
 - 3311 & its dual: Morrison and Penneys (2013)
 - ...ongoing research...

Goal for Today's Talk:

Find presentations for the subfactor planar algebras of index 4 for the:

Goal 1: The Temperley-Lieb planar algebra \mathcal{TL}

The planar algebra \mathcal{TL} contains the algebras $\mathcal{TL}_k, k \geq 0$, over \mathbb{C} .

Figure: An element of \mathcal{TL}_3

Melody Molander

Planar Tangles

Common Planar Tangles

Multiplication

• Trace $\operatorname{tr}_k : \mathcal{TL}_k \to \mathcal{TL}_0$

• Tensor $\otimes_{k,\ell} : \mathcal{TL}_k \otimes \mathcal{TL}_\ell \to \mathcal{TL}_{k+\ell}$

General Planar Tangle

Associated linear map: $Z_T : \mathcal{TL}_2 \otimes \mathcal{TL}_3 \otimes \mathcal{TL}_2 \rightarrow \mathcal{TL}_1$

Theorem (Jones)

Any subfactor planar algebra of index $n \ge 4$ contains a copy of $T\mathcal{L}$.

Melody Molander

Skein Theory for Affine ADE Subfactor Planar Algebras

Definition

A planar algebra is:

- a collection of vector spaces: \mathcal{P}_k , $k \ge 0$
- a rule that assigns to each planar tangle T, a linear map Z_T from the vector spaces associated to the inner squares to the vector space associated to the outer square such that:
 - linear maps compose in the same way planar tangles do

... (()

• isotopy (rel the boundary) give the same maps

• the identity on
$$\mathcal{P}_k$$
 i

Subfactor Planar Algebra

 \mathcal{TL} is a special type of planar algebra called a **subfactor planar algebra**, one of the most important properties being:

• \mathcal{TL}_0 must be one-dimensional

Why is this a great property?

Any closed diagram evaluates:

and also this gives a that trace will be a sesquilinear form on \mathcal{P}_k :

The Formal Definition of a Subfactor Planar Algebras

Definition

A subfactor planar algebra is a planar algebra with

- \mathcal{P}_0 being one-dimensional
- only spaces for discs with an even number of boundary points are nonzero
- the spherical property, i.e., for each $D \in \mathcal{P}_1$, $(\bigstar D = \bigstar)$

• an antilinear adjoint operation $*: \mathcal{P}_k \to \mathcal{P}_k$ such that the sesquilinear form given by $\langle x, y \rangle = \operatorname{tr}(x^*y)$ is positive definite. Further * should be compatible with the horizontal reflection operation * on planar tangles.

Give a planar algebra ${\mathcal P}$ we can construct a tensor category ${\mathcal C}_{{\mathcal P}}$ as follows:

- An object is a projection in one of the n-box spaces P_n (i.e. π ∈ P_n such that π² = π and π^{*} = π)
- Given two projections $\pi_1 \in \mathcal{P}_n$ and $\pi_2 \in \mathcal{P}_m$, define $\operatorname{Hom}(\pi_1, \pi_2)$ to be the space $\pi_2 \mathcal{P}_{n \to m} \pi_1$, i.e, diagrams like:
- The tensor product π₁ ⊗ π₂ agrees with ⊗ in the planar algebra (placing diagrams side-by-side)
- The dual $\overline{\pi}$ of a projection is rotating it 180 degrees
- The trivial object \emptyset is the empty picture (which is a projection in \mathcal{P}_0)

* Th2 * X * X * Th2 * X

There is a special self-dual object |, a single strand.

$\mathsf{Mat}(\mathcal{C}_{\mathcal{P}})$

Given the category $\mathcal{C}_{\mathcal{P}}$ we can define its matrix category:

- The objects of Mat(C_P) are formal direct sums of objects of C_P (which were the projections from all the box spaces)
- A morphism of Mat(C_P) from A₁ ⊕ ... ⊕ A_n → B₁ ⊕ ... ⊕ B_m is an m-by-n matrix whose (i, j)th entry is in Hom_{C_P}(A_j, B_i).
- An induced tensor product from $\mathcal{C}_{\mathcal{P}}$:
 - Tensoring Objects: formally distribute, i.e., $(\pi \oplus \pi) \oplus (\pi \oplus \pi) \oplus (\pi \oplus \pi)$
 - $(\pi_1\oplus\pi_2)\otimes\pi_3=(\pi_1\otimes\pi_3)\oplus(\pi_2\otimes\pi_3)$
 - Tensoring Morphisms: use usual tensor product of matrices and the tensor product for $\mathcal{C}_\mathcal{P}$ on matrix entries

Projections of the Temperley-Lieb Planar Algebra

- The Jones-Wenzl projection $f^{(k)} \in \mathcal{TL}_k$ is the unique projection in \mathcal{TL}_k with the property that $f^{(k)}e_i = e_i f^{(k)} = 0, \forall i$ \mathcal{TL}_k generators: 1=k
- *TL* is semisimple: every projection is a direct sum of minimal projections and for any pair of non-isomorphic minimal projections π₁ and π₂ we have that Hom(π₁, π₂) = 0

f^(k) are actually minimal projections: Hom(f^(k), f^(k)) is 1-dimensional:

• Two projections, π_1, π_2 , are *isomorphic* if there exists $g \in \operatorname{Hom}(\pi_1, \pi_2)$, and $g^* \in \operatorname{Hom}(\pi_2, \pi_1)$ such that $gg^* = \pi_2$ and $g^*g = \pi_1$.

Principal Graphs

- Principal graphs encode data of $Mat(C_P)$
- For \mathcal{TL} , Wenzl's relation: $f^{(k)} \otimes | \cong f^{(k+1)} \oplus f^{(k-1)}$, $f^{(j)} \in \mathcal{TL}_i$ are the Jones-Wenzl projections
- A principal graph encodes this relationship of the minimal projections:

which is A_{∞} !

• The **principal graph** of a semisimple planar algebra has vertices the isomorphism classes of minimal projections, and there are

dim Hom
$$(\pi_1 \otimes |, \pi_2)$$
 (= dim Hom $(\pi_1, \pi_2 \otimes |)$)

edges between the vertices $\pi_1 \in \mathcal{P}_n$ and $\pi_2 \in \mathcal{P}_m$.

• i.e., Let π be a minimal projection. Then $\pi \otimes | \cong \bigoplus (neighbors of \pi in the principal graph)$ Find the subfactor planar algebras of index 4 associated with the \tilde{A}_{2n-1} Dynkin diagram:

What must happen?

Arrow Case: P_2 and Q_2

Melody Molander

Skein Theory for Affine ADE Subfactor Planar Algebras

Arrow Case: The rest of the vertices

Theorem 1 (M.)

$\mathcal{P}_0(U)$ is at least one-dimensional

Define $f : \mathcal{P}_0(U) \to \mathbb{C}$ by the following algorithm.

- Define f(∅) = 1. Let D ∈ P₀(U) be non-Temperley-Lieb. Use the relation (2) to ensure every strand is oriented.
- **2** Enumerate all the U and U^* . Say $\{U_1, ..., U_\ell\}$ and $\{U_1^*, ..., U_m^*\}$
- For each U_i in P₀(U) make a path, p_i from the star on the outside of the diagram to the star for the U_i. Do similarly for U_i^{*}.
- Define the star path length, K_i,K^{*} = (#+)-(#+) crossed

for each U_i or U_i^* , respectively

• Calculate
$$k = \sum_{i,j} (k_i - k_j^*) \mod(2n)$$
 Then define $f(D) = \omega_n^k$.

$\mathcal{P}_0(U)$ is at most one-dimensional

Theorem 2 (M.)

Proposition 1

There are at exactly 3n distinct subfactor planar algebras with principal graphs \tilde{A}_{2n-1} .

Proposition 2

There are exactly two distinct subfactor planar algebras with principal graphs \tilde{A}_{∞} , i.e, the principal graphs are:

Find the subfactor planar algebra(s) of index 4 associated with the \tilde{D}_{∞} . Dynkin diagram:

Theorem 3 (M.)

Skein Theory for Affine ADE Subfactor Planar Algebras

Proposition 3

The \tilde{D}_{∞} subfactor planar algebra is a subplanar algebra of the arrow case of the \tilde{A}_{∞} planar algebra.

$| \mapsto | \quad S \mapsto \downarrow \uparrow \uparrow \uparrow \downarrow - \rightarrowtail - \widecheck \frown \uparrow \uparrow \downarrow \downarrow$

Evaluation Algorithm

Theorem (Bigelow and Penneys 2012)

If a planar algebra generated by $S \in \mathcal{P}_n$ satisfies that:

is a linear combination of trains, i.e.,

• and S^2 is a linear combination of S and $f^{(n)}$

then any closed diagram can be evaluated using the jellyfish algorithm.

Find the subfactor planar algebra(s) of index 4 associated with the \tilde{E}_7 Dynkin diagram:

Theorem 4 (M.)

1.
$$(=2 \ 2. \ *)^{=0} \ 3. \ (*)^{=} \ 3. \ (*)^{=} \ 4. \ S^{2} = S + 6f^{(4)} \ 5. \ (*)^{=} \ 5. \ (*)^{$$

$$= 0$$

6. For
$$Q = \frac{2}{5}f^{(4)} + \frac{1}{5}S$$
, $Q = \frac{2}{5}f^{(4)} + \frac{1}{5}S$

8. Defining
$$\times i$$
 $(i \times i)$, satisfies Reidemeister 2 & 3, &

7. For
$$P = \frac{3}{5}f^{(4)} - \frac{1}{5}S$$
, $P = \frac{3}{5}f^{(4)} - \frac{1}{5}S$, $P = \frac{1}{5}$

• Prove the other direction of \tilde{E}_7 .

Ind similar results for the other affine Dynkin diagrams:

References

Thank you!

Afzaly, N., Morrison, S., and Penneys, D. (2015).

The classification of subfactors with index at most $5\frac{1}{4}$.

Bigelow, S. and Penneys, D. (2014).

Principal graph stability and the jellyfish algorithm. *Mathematische Annalen*.

Jones, V. F., Snyder, N., and Morrison, S. (2014). The classification of subfactors of index at most 5. *Bulletin of the AMS*, 51(2):277–327.

Morrison, S. (2013).

Small index subfactors, planar algebras, and fusion categories. https://tqft.net/math/2013-07-03-Macquarie.pdf.

Morrison, S., Peters, E., and Snyder, N. (2010).

Skein theory for the D_{2n} planar algebras. J. Pure Appl. Algebra, 214(2):117–139.

Peters, E. (2009).

A planar algebra construction of the haagerup subfactor.

Peters, E. (2011).

Non-commutative galois theory and the classification of small-index subfactors. https://webpages.math.luc.edu/~epeters3/UMB.pdf.

Peters, E. (2017).

Proof by pictures. https://www.youtube.com/watch?v=a0IP7b6X8LI.