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Introduction

Throughout history, knots have been designated
many meanings and uses. In the 1800s, knots were
believed to have deep connections to the physical
world, which initiated the study of knots for sci-
entific purposes. With the rise of topology, math-
ematicians began investigating knots which led to
many powerful techniques in pure mathematics as
well as applications in applied fields such as biol-
ogy and quantum physics. Here, we investigate a
fundamental question of knot theory and present
new expansions of previous results to better under-
stand knots and their properties.

Motivation

We say that a knot is a smooth embedding S1 →
S3. Similarly, a link is a disjoint collection of smooth
embeddings S1 → S3, which may be entangled.

Figure 1: the trefoil knot

We say that links are equivalent if we can continu-
ously deform one link into the other, without ripping
or gluing. In general, finding such a deformation is
challenging. Further, proving that such a deforma-
tion doesn’t exist is even harder. To help attack this
problem, mathematicians developed link invariants.
Links that are different with respect to some invari-
ant are not equivalent; however, links with the same
invariant are not necessarily equivalent. In this sense,
link invariants give us a coarse measure of equivalence.
Computing link invariants in general can be very com-
plicated, and it is of great interest to find easier ways
to calculate them.

Figure 2: The trefoil is σ3
1 ∈ B2

Background

One type of link invariant is called a link polynomial,
where links are assigned some polynomial. A natu-
ral approach to computing these link polynomials is
through the use of graph theory. A graph is a set
of vertices which are connected by edges. A graph is
weighted if its edges are assigned a value. If we color
edges of a graph such that every vertex is covered ex-
actly once, then we have a perfect matching.

Figure 3: A graph G and its 2 perfect matchings

A spanning tree is the smallest subgraph such that
every vertex of a graph is still covered by an edge.

Figure 4: all spanning trees of G

Every link has a corresponding graph called a Tait
graph. By assigning letters as weights to a link’s Tait
graph, we can compute its link polynomials. This
method, which was first used by Moshe Cohen, is com-
putationally faster than the standard way to compute
these invariants. We have applied this method to a
different class of links coming from closed braids.
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Figure 5: σi ∈ Bn

Figure 6: σ4
1 ∈ B2 and its closure

Methods

Computing the determinant of a matrix is computa-
tionally fast. This means that it takes relatively few
resources for a computer to run an algorithm to calcu-
late the determinant. It is a theorem of Thistlethwaite
that the Jones polynomial can be computed by look-
ing at the spanning trees and weights of a link’s Tait
graph. In general, calculating these spanning trees is
computationally demanding. So, we wish to turn this
problem of finding spanning trees into taking a deter-
minant.
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Figure 7: Balanced overlaid Tait graph

By working with the balanced overlaid Tait graph, we
find that there are as many perfect matchings as there
are spanning trees of the Tait graph. By showing that
the weights coming from spanning trees correspond
weights from perfect matchings, we can reduce the
computation of a link polynomial to a determinant.
In particular, we want to show:

If this equation above holds for some link L and its
diagram, we say that L admits a dimer model.

Theorem

Let L be a link arising from the closure of an n-
braid in the form of σm1

1 σm2
2 . . . σmn−1

n−1 for |mi| > 0.
Then L admits a dimer model.

Corollary Let L be a (p, 2) torus knot. Then L

admits a dimer model.
Conjecture Every (p, q) torus knot admits a dimer
model.
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